A Subset-L attice Algorithm for Mining High Utility Patterns

over the Data Stream Sliding Window
Ye-In Chang, Chia-En Li, Rong-Fu Chen, Siang-Jia Ohing-Yi Yen
Department of Computer Science and Engineering
National Sun Yat-sen University
Kaohsiung, Taiwan
lice@db.cse.nsysu.edu.tw

ABSTRACT

High utility pattern mining considers each item with a distinct
profit or price. The problem is that infrequent patterns may
contribute a great number of profit, whereas frequent patterns
may only contribute a small amount of profit. The SHU-Grow
algorithm uses the tree-based data structure to mine high utility
patterns. In such a structure, the SHU-Grow algorithm always
records the estimated value of each pattern. Then, such an
algorithm has to identify actual high utility patterns from the
candidate patterns. In this paper, we propose the Subset-L attice
algorithm based on the dliding window model. Our algorithm
utilizes the lattice structure to record the information of the
transactions and to store relationship between the child node and
the parent node. From the perfor mance study, we show that our
Subset-L attice algorithm could provide better performance than
the SHU-Grow algorithm both in the processing time and storage
space.

Keywords: data mining,frequent pattern, igh utility pattern,
lattice structure, sliding window

. INTRODUCTION

In the real world, each item has different profitdathe
number of items purchased by consumers could bentpbne,
but more than one. In utility mining, each item hsrnal utility
value that represents the quantity of the itemahdransaction,
and external utility value such as profit or priBased on these
definitions, we can get the utility of each itendadentify high
utility patterns in high utility pattern mining [3}. In this utility
framework, patterns with high utility or high puede quantity
will be identified as high utility patterns even ttiey occur
infrequently. In other words, high utility pattemining does not
satisfy the downward closure property, which metinas the
item is infrequent, and its superset is also infeeqy [4-13].
However, the superset of the low utility patterti piobably be
a high utility pattern. So, high utility pattern mmg is more
difficult than traditional frequent pattern mininig. high utility
pattern mining, it considers that each item wittlisginct profit
or price and non-binary item quantity in a transectOn the
other hand, the profit represents the importanandfem. It is
the important difference with the previous frequeattern
mining. Thus, the high utility mining is based avotkinds of
numeric data, the quantity and the profit of eaeimj and it can
play an important role in market analysis. If thdity of an
itemset is greater than the minimum utility thrddhahis
itemset is identified as a high utility pattern amdlects real
world market data.

Ryanget al proposed th&HU-Grow algorithm. They use
SHU-Treedata structure to store transactions within theerur
window. The technology of their algorithm can handéveral
batches of transactions within the current slidimgdow. In the
SHU-Grow algorithm, for each batch in the current sliding
window, a utility counter witth batches is constructed. If an
item is in theith batch of the current sliding window, tité
batch is set to be the estimated utility of thenit&Vhen the
window slides, the list of utility counter of nodssneeded to
left-shift to delete the oldest batch. For examphe utility
counter of node A'is (30, 20, 0). If the oldesthds deleted, the
utility counter of node A becomes (20, 0, 0). Maeg their
algorithm has a header table to store the estimaiiégt of each
single item calleRTWU When the oldest batch is deleted, the
RTWUof item A will be decreased by 30 in the headefetab
TheSHU-Growalgorithm needs to check each candidate pattern
to decide whether it is a high utility pattern at.nThus, they
need to scan each transaction within the curremdow again.

Therefore, in this paper, we propose an algoritBohset
Lattice algorithm, to find the result based on the reaueal
instead of the estimated value, of the patternolm data
structure, we use a lattice to mine high utilittpans. We check
the relation between the incoming transaction dwedcdurrent
transactions in the lattice structure, when the t&nmsaction
comes [14]. There are five relations which are eoned in our
algorithm: (1) empty, (2) equivalent, (3) superéétsubset, and
(5) intersection. Because the relations exists éetwthe set and
the subset, there is one advantage that therewss iumber of
nodes in the lattice than those nodes stored irtrédee of the
SHU-Grow algorithm. We can calculate the real value of the
each single item. Furthermore, our lattice striecttequires
fewer nodes than theSHU-Tree Besides, our proposed
algorithm records the real value rather than thienaged value
of the pattern. Therefore, tiBibsel atticealgorithm has better
performance than theSHUGrow algorithm both in the
processing time and storage space (the numbeeatect nodes).

The rest of the paper is organized as follows. dnotiSn 2,
we give a brief description of th8HU-Grow algorithm. In
Section 3, we present the propoSedset-Latticalgorithm. In
Section 4, we present the performance study ofatgorithm
and make a comparison between our algorithm and@khg-
Growalgorithm [15]. Finally, Section 5 gives the corsian.

I RELATED WORK

Ryanget al proposed a sliding window based algorithm,
SHU-Grow(Sliding window based High Utility Grow) [2] with
a data structur8HU-Tree(Sliding window based High Utility

Tree) to mine high utility patterns from the datmeam.
Moreover, they use two techniquéRGE (Reducing Global
Estimated utilities) andRLE (Reducing Local Estimated
utilities). The problem is defined as mining higflity patterns
within the current window. The mining result must lppdated
by every window sliding. Figure 1-(a) shows a dgttaam. In
Figure 1-(a), each iteim in a transactiof; is associated with a
guantity value which is callethternal utility and denoted as
iu(im T¢). In Figure 1-(b), let = {iy, iy, ...,iv} be a finite set of
distinct items, a transactidiabe a subset df and a patterR be
a set of itemsi{, iz, ...,ii} in |, whereP O | and 1<| <v. Each
itemin in a database has a unit profit which is cabeternal
utility and denoted aau(in). If TWU of a patterrP in Wkis no
smaller thaminutilwk , whereminutilwkis the minimum utility
thresholdP is a high transaction weighted utilization pattern.

Tid Transaction TU W,

T, | (A 1),(B,3),(D,2) 23 JBI Ttem | Profit
T, | (A 2),B, 1),(C 4, T, 4| 39 w. | & 3
Ty [(C, 1), (E,4) 24 J B, B 2
T, | (A3),(8,2),(D,3) 34 c | 4
Ts | (B,4),(C.2) 16 :I B, D 7
Ts | (AL 1),(B,5),(T,3) 28 — E 5
T; | (A 2),(B,4) 14 JB4

Ts | (B, 2),(D, 1), (E,3) 26

(@) by

Figure 1. (a) Data stream; (b) Profit table [2].

The framework of the algorithm is composed of thsteps.
In the first step, their method constructs a glale# through a
single scan of the current window in data streanth®RGE
technique. In the second step, it generates caedjiterns
from the constructed tree by tRé& Etechnique. In the last step,
the algorithm identifiers a set of high utility pernhs from the
candidates. Meanwhile, the global tree can be epdat

Ill. THE SUBSET-LATTICE ALGORITHM

In this section, we propose tsibset-Latticalgorithm to
identify the high utility patterns over data streamsing the
sliding window model.

A. Data Structure

In utility mining, each item has the individual fit@and the
non-binary form quantity in the transaction. Theghhiutility
patterns are the sets of items that contributgtbfitable value,
which satisfy the threshold, in the database. Hamnev
the "Downward Closure Property” does not hold insth
technique [5, 6, 9, 10, 12, 13]. (Note that the Vilbavard
Closure Property” mean that the item is infrequemd its
superset is also infrequent.). The lattice strgctontains the
root, nodes, and child-link as shown in Figure Be Toot is a
start point, which has no information. When a neamgaction
comes, we search the lattice structure from the hoeach node,
we record the itemset and the ar@$RecordsThe child-link
points to the subset node. With the child-link, se@ check the
relationship between nodes and insert the nodetlietdattice
structure easily. Moreover, we can update the nurabgems
in an itemset efficiently by the arraggSRecord¢o know the
number of each item. The arr§SRecordas the quantity-
sequence representation of the quantity of eagh ifde size of
the arrayQSRecordss |Batch| i.e., the number of batches in a
window, and the length of the quantity-sequendétesn|, i.e.,
the size of a set of items in the database. Inratioeds,|ltem|
is the longest length of distinct items. The taBfeTableis an
array which stores the quantity of each item in therent
window. When the inserting process and the delgtingess are
performed, we will update the contents of the tabfgTable
according to the quantity-sequence. The t&@€éTableis an
array which stores all transactions of the curvéntiow and the
corresponding quantity-sequence of each transactwhen the
inserting process and the deleting process arerpestl, we will
update the contents of the tal$&VTableby the transaction

whenever a window is full and a new batch arrives b eyisiing in this window. This lattice structure hasree

eliminating the oldest batch and reflecting the . In the

advantages. First, the relationship between thetreavgaction

SHU-Treg each nod has the following basic elements: the and the current transactions can be easily undetsty using
item name,N.amé the more reduced overestimation utilities thjs lattice structure. Second, we can update tineber of items

than TWU is called RTWUReducedTWU), N.,;; two node
pointer,N.parent@NdN.nodeiink @ set of child noded i have an
array of boolean values. If there arédatches in the current
window, the number of node utilities in the courigan. Figure
2 shows the constructed glotetiU-Treeafter the last batcBs

is inserted.

ltem | RTWU | Link i
A | 21
E :L:, [A9.9, (;+3xl|\H 0,0, 0+2x 4HC04 0]
]}) ;? [B: 17_.17:_57_.;.37+2>(5 ||c;u,u.;s+4 x2 J|E:0,:24,U |
[c:2a, 0.0 H 1:23,24,0 | |(:n| 3+5x3]
13 39,0,0

Figure 2. The result of inserting transactidn.

in an itemset efficiently. Third, we calculate thetual value
rather than the estimated value.

root

ABCD CDE

0,22110,0 00232,0,0
BC AB ACD
0, 02100, 05500 46000, 57000, 0 0, 20110, 40310
CD
00230,00110, 00310

Figure 3. The lattice of the window;.

B. The Proposed Algorithm

Our algorithm has five main steps. First, we transf the
itemset to the quantity sequence. Second, we dheclelation
between the new transaction and the current trineacand the
corresponding quantity-sequence of the current ewinds
stored in the tablesSWTable Next, we insert the quantity-

sequence into the arrgySRecord®f the corresponding node example of the profit table. We assume that the gia batch is

and update its child nodes. Then, calculate thigyutf the
itemset on each node in the lattice structure.llyinge examine
the subset of a set of the current high utilitytgrass. In the first
step, we will transfer the transaction into thergitg-sequence
representation. We use the longest length of distiems as the
length of the quantity-sequence according to tkied¢order. In
the second step, we check the relation betweenntwe
transaction and the current transactions. Theré\aeases, as
shown in Figure 4, in inserting itemsets into ditide structure.
When the current window becomes full, we will del¢he
information of the oldest batch (a set of transas) and insert
the information of a new batch. At this time, we #& array
QSRecordsf all nodes initially to zera €., (0, 0, 0)).

Figure 4. The set-relations diagram between thetravgactiorTNewand
the old transactiomOld: (a) Case 1: Empty; (b) Case 2: Equivalent; (©eCa
Superset; (d) Case 4: Subset; (e) Case 5: Intemsect

In order to get the information of the quantity, wee the
guantity-sequence representation to store the rirdtion of
each transaction. The longest length of the quasdéiuence is
the number of distinct items according to the lakmrder. For
the example of the transaction {(C, 2), (D, 3), 2K, we set the
values to the corresponding quantity one by onerdaayg to the
lexical order position. The quantity-sequence repnéation of
{(C, 2), (D, 3), (E, 2)}is denoted aQuantitySe00232, since
there are five items {A, B, C, D, E}. Because ttri@nsaction
does not contain item A and item B, the positioiiterh A and
item B are set to 0. The quantity-sequence of tinelow W, is
shown in Figure 5-(a). During the processing oidasertion,

we will record T; and its related quantity-sequence in table

SWTableas shown in Figure 5-(b).

Tid Transaction Qunntity-

w, Sequency
(C.2),(D,3).(L,2) 00232
(A, 4).(B, 6) 46000
(A, 3),(B,3) 35000 Item | Profit
(A, 2).(B,2).(C, (D,)| 22110 A 3
(A, 4),(C,3).,(D, 1) 40310 B 2
(B. 5).(C., 3) 05500 C 4
(C,2),(D,1),(E, 1) 00211 D g
(A, 1),(B,3).(C, 3) 13300 H 5

(@) (b)

Figure 5. (a) The quantity-sequence of each traieseio windowW;; (b)
Profit table.

We use an example to describe our approach. Fipjag
shows an example of the data stream and Figurg hflws an

2 transactions, the size of a window is 3 batclaesl the
minimum utility threshold is 22%. The length of aquigy-

sequence is 5 and the size of the a@&Records 3. When the
new transaction comes, we process ProcddaegtTransaction
as follows.

01: ProcedurénsertTransactior(root, TNew;

02: begin
03: foreach chil@Old of root do
04: begin
05: if (NewN TOId = &) [* case 1: empty*/
: begin
07: create a new nodeTdlew
08: end;
09: else iffNew==TOId) /* case 2: equivalence */
10: begin
11: break;
12: end;
13: else iffNew> TOId) [* case 3: superset */
14: begin
15: IeT0Ild be TNewss child;
16: end;
17: else iffNewc TOId) /* case 4: subset */
18: begin
19: IefOld be TNews parent;
20: end;
21: else ifNewN TOId+ &) /* case 5: intersection */
22: begin
23: intersection :ENewN TOId,
24: if TOld's descendant does not conthitersectionX
25: begin
26: createa new node fointersectionX
27: TNewlink to intersectionX
28: TOIld link to intersectionX
29: InsertTransactio{TNew, intersection)X
30: InsertTransactio(TOId, intersection;
31: end;
32: end;
33: end;
34: end;

When the first transactiof. comes, the root does not have
a child. So, a new node for the itemset {CD&greated directly.
The result of inserting transactidn is shown in Figure 6-(a),
where (0, 0, 0) will record the quantity-sequenéesuch an
itemset in batclB;, Bi+1, andBi+2, respectively, later. When the
second transactiof, comes, our algorithm will call Procedure
InsertTransactiorto check the set-relation among transaclipn
and previous transactions. Transactiorwill process Case 1
(the empty relationship to {CDEY}). Thus, a new ndoeitemset
{AB} is created. The result of inserting transacfigis shown

in Figure 6-(b). When the third transactidn comes, we will
call ProcedurelnsertTransactionto check the set-relation
among transactiomiz and previous transactions. Transacfign
will process Case 2 (the equivalent relationship{A®}).
Moreover, our algorithm does not create a new ndHe.result
of inserting transactiols is shown in Figure 6-(c). When the
fourth transaction T4 comes, we will call Procedure
InsertTransactiorto check the set-relation among transaciipn
and previous transactions. Transacfiarwill pass through the
conditions of Case 3 (the superset relationshipA&}) and
Case 5 (the intersection relationship with {CDEFjrst, the
itemset of transactiols is the superset of itemset {AB}.
Therefore, a new node for itemset {ABCD§ created and
itemset {AB} becomes the child node of itemset {ABCD}.
Second, itemset {ABCDRnd itemset {CDE}have a common
itemset {CD}. Next, we will call FunctiofrindLatticeto check
whether the common itemset {C@Kists in the current lattice
structure or not. Because the common itemset {@B&s not
exist in the current lattice structure, our aldgamitwill create a
new node {CD}to be the child node of itemset {ABC3nd
itemset {CDE}. The result of inserting transactidnis shown
in Figure 6-(d).

TID

Quantity-Sequence TID | Quantity-Sequence root

1 00232 1 00232 2 e
CDE 2 46000 CDE AB
0,0,0 0,0,0 0,00
(.Hr Hl 1> Hﬁ 2)
(a) (b)
v-S Toot
TID | Quantity-Sequence root TID | Quantity-Sequence ~
1 00232 SN
1 00232 N -
2 46000 S 46000 SBOC](? OU(?FO
3 =00 0,0,0 0,00 3 35000 .
4 22110 =Y
AB (o))
0,0,0 0,0,0

©

Figure 6. The result of inserting transaction argeiting the quantity-
sequence of transaction into taBM/Table(a) Ty; (b) T2: (¢) Ts; (d) Ta.

All the intersection of all the transactions instilindowW
are stored in each node of this lattice structund #he
corresponding quantity-sequence of the current ewinds
stored in the tabl8WTableas shown in Figure 7-(a). Moreover,
we insert the quantity-sequer@eantitySeef each transaction
into our data structure and update its child nodis. will
perform the mining process to find high utility feabs.
Therefore, our algorithm inserts the quantity-sexee of
transactiorTy, 00232, which belongs to batBhinto this lattice
structure. The quantity-sequer@eantitySeq00232, is updated
in the corresponding position of the ar@8Records the node.
In the same time, itemset {CDHjas a child node, {CD}. Thus,
our algorithm updates the arr@BRecordsf itemset {CD}into
(00230, 0, 0) by the quantity-sequence of transadti, 00230
since this node only contains item C and item DatTik, we
record the quantity-sequence of transactipim the node {CDE}
and all of its child nodes. Figure 7-(b) showswedow W, has
been set up.

Quantity-Sequence
00232
46000
35000
22110
A3 T0
03500

root root

DI
00232.0.0

ABCD
0,22110,0

onn
00,0

ABCD
0.0,0

BC AB ACD
0,0,0 0,0,0 0,0,0 /

5 AB ACD /
0, 02100, 05500 46000, 57000, 0 0, 20110, 40310/

=) ([0 [N RV Py e

o
0.0,0

D
(0230, 00110, 00310

(a) (b)

Figure 7. (a) The result of inserting transacfien Ts and inserting the
guantity-sequence of transaction Tl into tableSWTable(b) The result of
inserting the quantity-sequence of transaclipnTs.

The minimum utility of the window\, is calculated from
the tableCntTableof the windowW1 and the profit table. For
example, in this cas@ptalTUis 164 (=3x 13 + 2x 18 + 4x
11 + 7x 5 + 5x 2). The threshold of the window, is 36.08
(=164 x 22%). First, the count of each single item is stdre
tableCntTable Therefore, we can calculate the utility value of
each item to obtain the high utility patterns. Seteeach node
of the lattice has an arrapSRecordswhich holds the
information about the quantity of each item in fkemset.
Therefore, we can calculate the utility value offe#temset in
the lattice to obtain the high utility patterns. &vhthe utility
value of the itemset is greater than the threshadddentify this
itemset as a high utility pattern. Because theefutifseach high
utility patterns in the lattice may be the higHitytipattern, we
examine the high utility patterns, which its uilitalue is greater
than the threshold and the size of this itemsgtéster than 2.
By the way, the size of the itemsekidf an itemset satisfies the
above two points, our algorithm will create all sets of such
an itemset, which its size ksl, to calculate the utility value of
each subset recursively; otherwise, the mining atjmer will
stop. We use the above example to achieve the rdsré the
above description. First, we obtain the high wtiiiaitterns, {A:
39}, {C: 44}, from the tableCntTable Second, we have
calculated the utility value of each itemset toadftthe high
utility patterns, {CDE: 39}, {BC: 38}, {AB: 53}, {ACD: 48},
{CD: 59}. At this time, the itemset {CDEaNnd {ACD} satisfy
the condition that the size of the itemset is gretitan 2 and is
a high utility pattern itself. Therefore, we wilteate the other
subset of the itemset {CDEnd {ACD}, including {CE}, {DE},
{AC}, and {AD}, to check whether the itemsets isagh utility
pattern or not. The result of the utility values tbese four
subsets are no greater than minimum utility. THiUge utility
values of these high utility patterns of the winddivare {A:
39}, {C: 44}, {CDE: 39} {BC: 38}, {AB: 53}, {ACD: 4 8}, {CD:
59}.

When a new batch informatid& which contains transaction
Tz and transactioTs, comes as shown in Figure 5-(a), our
algorithm will perform the deletion process. Firite tables
CntTableand SWTableof the windowW; are updated by the
information of the oldest batcB;, T: and T.. Second, our
algorithm shifts the arra@QSRecord®f all nodes to the left as
shown in Figure 8-(a). For example, for itemset JABhe
original arrayQSRecordss (46000, 57000, 0). After the shifting
process, the arra@SRecordsecomes (57000, 0, 0). If the
shifted arrayQSRecordshecomes zeroi.é., (0, 0, 0)), our
algorithm removes this node from the lattice.{the node with
itemset {CDE}). The result of deletion process asven in
Figure 8-(b). When the deletion process is finished will
perform the insertion process continuously.

root root
ABCD CDE ABCD

22110,0,0 0,0,0 22110,0.0
BC AB ap | BC AB ACD
02100, 05500, 0 57000, 0, 0 20110, 40310, 0/ 02100, 05500, 0 57000,0,0 20110,40310,0
o D
00110, 00310, 0 00110, 00310, 0

(a) (b}

Figure 8. (a) The result of shifting the ar@$Recordsf all nodes to the
left; (b) The result of deletion process.

When the seventh transactioly comes, we will call
ProcedurelnsertTransactionto check the set-relation among
transactionT; and previous transactions. Transactinwill
pass through the conditions of Case 5 and Ca¥¢hgn the
eighth transactionTg comes, we will call Procedure
InsertTransactiorto check the set-relation among transaciign
and previous transactions. Transacfigwill pass through the
conditions of Case 4, Case 5, and Case 3. Thd afsnoberting
transactionT; and Tg is shown in Figure 9-(a). All the
intersection of all the transactions in this winddiare stored
in each node of this lattice structure. Then, wseih the
guantity-sequenc@uantitySeaf each transaction into our data
structure and update all of its child nodes. Indame way, we
perform our insertion process again. Therefore, agorithm
inserts the quantity-sequence of transaclian00211, which
belongs to batchB. into this lattice structure. The quantity-
sequenc&uantitySeq00211, is updated in the corresponding
position of the arraSRecord#n the node. In the same time,
itemset {CDE} has a child node, {CD}. Thus, our algorithm
updates the arrapSRecordsof itemset {CD} into (00110,
00310, 00210) by the quantity-sequence of trarmatt 00210
since this node only contains item C and item DxtN&e insert
the quantity-sequence of transactiyy 13300, which belongs

to batchB4 into this lattice structure. The quantity-sequenc
QuantitySeq13300, is updated in the corresponding position o
the arrayQSRecordsn the node. The result of inserting the

guantity-sequence of transactidnandTg is shown in Figure 9-

(b).

TID | Quantity-Sequence rf{(_)l
3 35000
7 22110 ABCD CDE
22110,0,0 0,0,0
3 40310
6 05500 ABC ACD
- Q0210 2210000 20110,40310,0
BC AB AC D
02100,05500,0 57000, 0, 0 20100, 40300, 0 00230, 00110, 0
(@)
root
ABCD CDE
22110,0, 0 0,0, 00211
ARC ACD
22100, 0, 13300 20110, 40310, 0
ne AT AC cD

02100, 05500, 03300 57000, 0, 13000 20100, 40300, 10300 00110, 00310, 00210
(b)

Figure 9. (a) The result of inserting transacfleandTs and inserting the
quantity-sequence of transactibpandTs into tableSWTable(b) The result of
inserting the quantity-sequence of transaclipandTs.

IV. PERFORMANCE

In this section, we first present the performanceeh Then,
we present experiments result.

A. Performance Model

In this subsection, we will compare the performanetsveen
the Subset attice algorithm and thesHU-Grow algorithm for
the synthetic database. And, in the sliding windowdel,
algorithms use two parameters, the size of the avindnd the
size of the batch. Therefore, we evaluate mininéppmance of
the both algorithms in terms of the processing timder the
change of the size of the batch and the chandeedfize of the
window. Besides, we also evaluate mining perforreamicthe
both algorithms in terms of the processing timeauride change
of the minimum utility threshold. The profit of dadtem is
generated between 1 and 5, and the count of eaah ig
generated between 1 and 10. The parameters usdhdein
generation of the data are shown in Table | [2t.ds@mple, we
set the size of the window as 3 and the size ob#teh as 2.
Therefore, each window containsx2 = 6 transactions.

TABLE |. THE DETAILS OF PARAMETERS USED IN THE EXPERIMENTS

Parameters M eaning

Tavg The average size of the transactions in the dataset

1 The number of the items in the dataset

|D| The number of the transactions in the dataset

Threashold The minimum utility threshold

The number of the transactions deleted and inserted
while the window slides

BatchSize

WindowsSize The number of the batches in the window

B. Experiments Results

In this subsection, we will compare the performanetsveen
Subset attice algorithm and SHU-Grow algorithm. We
compare the processing time and the number of nofigse
synthetic database. We set the size of the windo@; ¢he size
of batch as 2, and the minimum utility threshold®2%b.

In Figure 10-(a), we show the comparison of thegssing
time of both algorithms for the synthetic dataset B(5-
9).160.D1K under the change of average size oktations. We
observe that the processing time of SidU-Grow algorithm
increases, when the average size of the transadticneases.
Because the number of the candidate patterns sesda each
window as the average size of the transactionseases.
However, theSubset attice algorithm obtains the candidate
patterns easily. Therefore, tBebsei atticealgorithm will take
the shorter time to find the high utility pattethen theSHU-
Growalgorithm.

In Figure 10-(b), we show the comparison of thecpssing
time of both algorithms for the synthetic datasetTd.I(20-
100).D1K under the change of the number of items.observe
that the processing time of th8ubsetattice algorithm
increases, when the number of items decreasesefoherthe
number of transactions with the intersection refathip
increases in thBubsel atticealgorithm as the number of items
decreases. Because tBeibset attice algorithm obtains the

candidate patterns easily. Therefore, tisubset attice
algorithm will take the shorter time to find theghi utility
patterns than th8HU-Grow algorithm.

In Figure 10-(c), we show the comparison of thecpssing
time of both algorithms for the synthetic datasef8.160.D(1-
15)K under the change of the size of dataset. \\ervk that
the processing time of tf#HU-Grow algorithm and th&ubset

results, theSubsel attice algorithm has better performance
than theSHU-Grow algorithm in the synthetic data.

VI. ACKNOWLEDGMENTS

This research was supported in part by the Ministfy
Science and Technology of Republic of China undanGNo.
MOST-106-2221-E-110-079.

Latticealgorithm increases, when the size of a datasedases.
The result shows that the number of the candidatéeqms
increases in each window as the number of tramsecti
increases. Because ti&ubsed attice algorithm obtains the
candidate patterns easily. Therefore, tlBubsetlattice
algorithm will take the shorter time to find theghi utility
patterns than th8 HU-Grow algorithm.

(1
(2

In Figure 10-(d), we show the comparison of the nenof
nodes of both algorithms for the synthetic datasef5.1(20-
100).D1K under the change of the number of items @ that
the SHU-Grow algorithm performs the mining process, it
generates other tree structure, which keeps tharnmation.
Therefore, theSHU-Grow algorithm requires more number of
nodes to construct their structure. We observettfmhumber
of nodes of theSubset attice algorithm increases, when the [5]
number of items decreases. The number of transsoih the
intersection relationship increases in tHeubsel attice
algorithm as the number of items decreases. Theretbe
number of nodes of tHeubset attice algorithm will increases.
However, theSubsei attice algorithm uses fewer nodes than
the SHU-Grow algorithm.

THEODIK

(3]

(4]

6l

(7]

T5I17D1K

8l

Sl

Procassing Time (s)
-2 BEEESE

Processing Time (s)

Number of ltems
(b)

T5I7D1K

s 7 s
Average Size of Transactions
(2)

TIB0D7K

(9]

2500

[10]

Processing Time (s)

& = Py E[
Number of ltems.

)

Number of Transactions (K)
© (11]
Figure 10. A comparison of the processing timenefdynthetic dataset: (a)
T(5-9).160.D1K, under the change of the average sfaransactions; (b)
T5.1(20-100).D1K, under the change of the numbetenfis; (c) T8.160.D(1-
15)K, under the change of the size of datasetT&)20-100).D1K, under
the change of the number of items.

[12]

[13]

V. CONCLUSION

In this paper, we have proposed Bset-Latticalgorithm
which can mine the high utility patterns by theuattcontribu-
tion value. In our algorithm, we use the lattioeisture to keep
the information of the transactions in each windMuereover,
our proposed algorithm uses an ar@gRecordsto store the
processed transaction dafyantitySeqFrom our performance

[14]

[15]

REFERENCES

C. F. Ahmed, S. K. Tanbeer, B. S. Jeong, and Khai, “Interactive
Mining of High Utility Patterns over Data StreamEXpert Systems with
Applications, vol. 39, no. 15, pp. 11979-11991, N2@12.

H. Ryang and U. Yun, “High Utility Pattern Miningver Data Streams
with Sliding Window Technique,” Expert Systems withplications, vol.
57, pp. 215- 231, Sept. 2016.

B. E. Shie, P. S. Yu, and V. S. Tseng, “Efficiefg@ithms for Mining
Maximal High Utility ltemsets from Data Streams viDifferent Models,”
Expert Systems with Applications, vol. 39, no. ifg, 12947-12960, Dec.
2012.

R. Agrawal and R. Srikant, “Fast Algorithms for Nfig Association
Rules,” Proc. of the 20th Int. Conf. on VLDB, p@04501, 1994.M.
Young, The Technical Writer's Handbook. Mill Valle@A: University
Science, 1989.

H. Chen, L. C. Shu, J. L. Xia, and Q. S. Deng, “M@Frequent Patterns
in a Varying-Size Sliding Window of Online Trandactal Data Streams,”
Information Sciences, vol. 215, pp. 15-36, Dec.201

M. Deypir, M. H. Sadreddini, and M. Tarahomi, “Arffigient Sliding
Window Based Algorithm for Adaptive Frequent Item&4&ining over
Data Streams,” Journal of Information Science ang.Fp. 1001-1020.

G. Grahne and J. F. Zhu, “Fast Algorithms for Fesgutemset Mining
Using FP-Trees,” IEEE Trans. on Knowledge and [Eatg., vol. 17, no.
10, pp. 1347—- 1362, Oct. 2005.

J. L. Koh and S. N. Shin, “An Approximate Approafidr Mining
Recently Frequent Itemset from Data Streams,” Caengscience Data
Warehousing and Knowledge Discovery, vol. 4081,Inqp. 352-362,
Spet. 2006.

H. F. Li and H. Chen, “Mining Non-Derivable Frequdtemsets over
Data Stream,” Data and Knowledge Eng., vol. 68, Baqp. 481498,
May 2009.

H. F. Li and S. Y. Lee, “Mining Frequent ltemsetgepData Streams
Using Efficient Window Sliding Techniques,” ExpeBystems with
Applications, vol. 36, no. 2, pp. 1466-1477, Ma2€199.

C. H. Lin, D. Y. Chiu, Y. H. Wu, and A. L. P. Chéef\Mining Frequent
Itemsets from Data Streams with a Time-Sensitividir®) Window,”
Proc. of the SIAM Int. Conf. on Data Mining, pp.-6®, 2005.

S. K. Tanbeer, C. F. Ahmed, B. S. Jeong, and YLé&e, “Sliding
Window-Based Frequent Pattern Mining over Datag®i®” Information
Sciences, vol. 179, no. 22, pp. 3843-3865, Nov9200

J. C. W. Lin, W. Gan, P. Fournier-Viger, H. C. Chaad T. P. Hong,
“Efficiently mining frequent itemsets with weightnd recency
constraints”, Appl. Intell., vol. 47, no.3, pp. #7892, Oct. 2017.

Y. I. Chang, M. H. Tsai, C. E. Li, and P. Y. LinA"“Set-Checking
Algorithm for Mining Maximal Frequent ltemsets frobata Streams,”
Intelligent Technologies and Eng. Systems, vol. 128, 2, pp. 51-63,
April 2013.

C. S. Hemalatha, V. Vaidehi, and R. Lakshmi, “Miairmnfrequent
Pattern Based Approach for Mining Outliers in D8taeams,” Expert
Systems with Applications, vol. 42, no. 4, pp. 198812, March 2015.

