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ABSTRACT 
High utility pattern mining considers each item with a distinct 
profit or price. The problem is that infrequent patterns may 
contribute a great number of profit, whereas frequent patterns 
may only contribute a small amount of profit. The SHU-Grow 
algorithm uses the tree-based data structure to mine high utility 
patterns. In such a structure, the SHU-Grow algorithm always 
records the estimated value of each pattern. Then, such an 
algorithm has to identify actual high utility patterns from the 
candidate patterns. In this paper, we propose the Subset-Lattice 
algorithm based on the sliding window model. Our algorithm 
utilizes the lattice structure to record the information of the 
transactions and to store relationship between the child node and 
the parent node. From the performance study, we show that our 
Subset-Lattice algorithm could provide better performance than 
the SHU-Grow algorithm both in the processing time and storage 
space. 

Keywords: data mining, frequent pattern, high utility pattern, 
lattice structure, sliding window 

I.  INTRODUCTION 

In the real world, each item has different profit and the 
number of items purchased by consumers could be not only one, 
but more than one. In utility mining, each item has internal utility 
value that represents the quantity of the item in each transaction, 
and external utility value such as profit or price. Based on these 
definitions, we can get the utility of each item and identify high 
utility patterns in high utility pattern mining [1-3]. In this utility 
framework, patterns with high utility or high purchase quantity 
will be identified as high utility patterns even if they occur 
infrequently. In other words, high utility pattern mining does not 
satisfy the downward closure property, which means that the 
item is infrequent, and its superset is also infrequent [4-13]. 
However, the superset of the low utility pattern will probably be 
a high utility pattern. So, high utility pattern mining is more 
difficult than traditional frequent pattern mining. In high utility 
pattern mining, it considers that each item with a distinct profit 
or price and non-binary item quantity in a transaction. On the 
other hand, the profit represents the importance of an item. It is 
the important difference with the previous frequent pattern 
mining. Thus, the high utility mining is based on two kinds of 
numeric data, the quantity and the profit of each item, and it can 
play an important role in market analysis. If the utility of an 
itemset is greater than the minimum utility threshold, this 
itemset is identified as a high utility pattern and reflects real 
world market data. 

Ryang et al. proposed the SHU-Grow algorithm. They use 
SHU-Tree data structure to store transactions within the current 
window. The technology of their algorithm can handle several 
batches of transactions within the current sliding window. In the 
SHU-Grow algorithm, for each batch in the current sliding 
window, a utility counter with b batches is constructed. If an 
item is in the ith batch of the current sliding window, the ith 
batch is set to be the estimated utility of the item. When the 
window slides, the list of utility counter of nodes is needed to 
left-shift to delete the oldest batch. For example, the utility 
counter of node A is (30, 20, 0). If the oldest batch is deleted, the 
utility counter of node A becomes (20, 0, 0). Moreover, their 
algorithm has a header table to store the estimated utility of each 
single item called RTWU. When the oldest batch is deleted, the 
RTWU of item A will be decreased by 30 in the header table. 
The SHU-Grow algorithm needs to check each candidate pattern 
to decide whether it is a high utility pattern or not. Thus, they 
need to scan each transaction within the current window again. 

Therefore, in this paper, we propose an algorithm, Subset-
Lattice algorithm, to find the result based on the real value, 
instead of the estimated value, of the pattern. In our data 
structure, we use a lattice to mine high utility patterns. We check 
the relation between the incoming transaction and the current 
transactions in the lattice structure, when the new transaction 
comes [14]. There are five relations which are concerned in our 
algorithm: (1) empty, (2) equivalent, (3) superset, (4) subset, and 
(5) intersection. Because the relations exists between the set and 
the subset, there is one advantage that there are fewer number of 
nodes in the lattice than those nodes stored in the tree of the 
SHU-Grow algorithm. We can calculate the real value of the 
each single item. Furthermore, our lattice structure requires 
fewer nodes than the SHU-Tree. Besides, our proposed 
algorithm records the real value rather than the estimated value 
of the pattern. Therefore, the Subset-Lattice algorithm has better 
performance than the SHU-Grow algorithm both in the 
processing time and storage space (the number of created nodes). 

The rest of the paper is organized as follows. In Section 2, 
we give a brief description of the SHU-Grow algorithm. In 
Section 3, we present the proposed Subset-Lattice algorithm. In 
Section 4, we present the performance study of our algorithm 
and make a comparison between our algorithm and the SHU-
Grow algorithm [15]. Finally, Section 5 gives the conclusion. 

II. RELATED WORK 

Ryang et al. proposed a sliding window based algorithm, 
SHU-Grow (Sliding window based High Utility Grow) [2] with 
a data structure SHU-Tree (Sliding window based High Utility 



Tree) to mine high utility patterns from the data stream. 
Moreover, they use two techniques, RGE (Reducing Global 
Estimated utilities) and RLE (Reducing Local Estimated 
utilities). The problem is defined as mining high utility patterns 
within the current window. The mining result must be updated 
by every window sliding. Figure 1-(a) shows a data stream. In 
Figure 1-(a), each item im in a transaction Tf is associated with a 
quantity value which is called internal utility and denoted as 
iu(im, Tf ). In Figure 1-(b), let I = { i1, i2, ..., iv}  be a finite set of 
distinct items, a transaction Tf be a subset of I, and a pattern P be 
a set of items {i1, i2, ..., i l}  in I, where P ∈ I and 1 ≤ l ≤ v. Each 
item im in a database has a unit profit which is called external 
utility and denoted as eu(im). If TWU of a pattern P in Wk is no 
smaller than minutilWk , where minutilWk is the minimum utility 
threshold, P is a high transaction weighted utilization pattern. 

 
Figure 1. (a) Data stream; (b) Profit table [2]. 

The framework of the algorithm is composed of three steps. 
In the first step, their method constructs a global tree through a 
single scan of the current window in data stream by the RGE 
technique. In the second step, it generates candidate patterns 
from the constructed tree by the RLE technique. In the last step, 
the algorithm identifiers a set of high utility patterns from the 
candidates. Meanwhile, the global tree can be updated, 
whenever a window is full and a new batch arrives by 
eliminating the oldest batch and reflecting the new one. In the 
SHU-Tree, each node N has the following basic elements: the 
item name, N.name; the more reduced overestimation utilities 
than TWU is called RTWU(Reduced TWU), N.nu; two node 
pointer, N.parent and N.nodelink; a set of child nodes. N.tail have an 
array of boolean values. If there are n batches in the current 
window, the number of node utilities in the counter is n. Figure 
2 shows the constructed global SHU-Tree after the last batch B3 
is inserted. 

 

Figure 2. The result of inserting transactions T1-T6. 

III.  THE SUBSET-LATTICE ALGORITHM 

In this section, we propose the Subset-Lattice algorithm to 
identify the high utility patterns over data streams using the 
sliding window model. 

A. Data Structure 

In utility mining, each item has the individual profit and the 
non-binary form quantity in the transaction. The high utility 
patterns are the sets of items that contribute the profitable value, 
which satisfy the threshold, in the database. However, 
the ”Downward Closure Property” does not hold in this 
technique [5, 6, 9, 10, 12, 13]. (Note that the ”Downward 
Closure Property” mean that the item is infrequent, and its 
superset is also infrequent.). The lattice structure contains the 
root, nodes, and child-link as shown in Figure 3. The root is a 
start point, which has no information. When a new transaction 
comes, we search the lattice structure from the root. In each node, 
we record the itemset and the array QSRecords. The child-link 
points to the subset node. With the child-link, we can check the 
relationship between nodes and insert the node into the lattice 
structure easily. Moreover, we can update the number of items 
in an itemset efficiently by the array QSRecords to know the 
number of each item. The array QSRecords has the quantity-
sequence representation of the quantity of each item. The size of 
the array QSRecords is |Batch|, i.e., the number of batches in a 
window, and the length of the quantity-sequence is |Item|, i.e., 
the size of a set of items in the database. In other words, |Item| 
is the longest length of distinct items. The table CntTable is an 
array which stores the quantity of each item in the current 
window. When the inserting process and the deleting process are 
performed, we will update the contents of the table CntTable 
according to the quantity-sequence. The table SWTable is an 
array which stores all transactions of the current window and the 
corresponding quantity-sequence of each transactions. When the 
inserting process and the deleting process are performed, we will 
update the contents of the table SWTable by the transaction 
existing in this window. This lattice structure has three 
advantages. First, the relationship between the new transaction 
and the current transactions can be easily understood by using 
this lattice structure. Second, we can update the number of items 
in an itemset efficiently. Third, we calculate the actual value 
rather than the estimated value. 

 
Figure 3. The lattice of the window W1. 

B. The Proposed Algorithm 

Our algorithm has five main steps. First, we transform the 
itemset to the quantity sequence. Second, we check the relation 
between the new transaction and the current transactions, and the 
corresponding quantity-sequence of the current window is 
stored in the table SWTable. Next, we insert the quantity-



sequence into the array QSRecords of the corresponding node 
and update its child nodes. Then, calculate the utility of the 
itemset on each node in the lattice structure. Finally, we examine 
the subset of a set of the current high utility patterns. In the first 
step, we will transfer the transaction into the quantity-sequence 
representation. We use the longest length of distinct items as the 
length of the quantity-sequence according to the lexical order. In 
the second step, we check the relation between the new 
transaction and the current transactions. There are five cases, as 
shown in Figure 4, in inserting itemsets into the lattice structure. 
When the current window becomes full, we will delete the 
information of the oldest batch (a set of transactions) and insert 
the information of a new batch. At this time, we set the array 
QSRecords of all nodes initially to zero (i.e., (0, 0, 0)). 

 
Figure 4. The set-relations diagram between the new transaction TNew and 

the old transaction TOld: (a) Case 1: Empty; (b) Case 2: Equivalent; (c) Case 3: 
Superset; (d) Case 4: Subset; (e) Case 5: Intersection. 

In order to get the information of the quantity, we use the 
quantity-sequence representation to store the information of 
each transaction. The longest length of the quantity-sequence is 
the number of distinct items according to the lexical order. For 
the example of the transaction {(C, 2), (D, 3), (E, 2)}, we set the 
values to the corresponding quantity one by one according to the 
lexical order position. The quantity-sequence representation of 
{(C, 2), (D, 3), (E, 2)} is denoted as QuantitySeq, 00232, since 
there are five items {A, B, C, D, E}. Because this transaction 
does not contain item A and item B, the position of item A and 
item B are set to 0. The quantity-sequence of the window W1 is 
shown in Figure 5-(a). During the processing of data insertion, 
we will record Ti and its related quantity-sequence in table 
SWTable as shown in Figure 5-(b). 

 
Figure 5. (a) The quantity-sequence of each transaction in window W1; (b) 

Profit table. 

We use an example to describe our approach. Figure 5-(a) 
shows an example of the data stream and Figure 5-(b) shows an 

example of the profit table. We assume that the size of a batch is 
2 transactions, the size of a window is 3 batches, and the 
minimum utility threshold is 22%. The length of quantity-
sequence is 5 and the size of the array QSRecords is 3. When the 
new transaction comes, we process Procedure InsertTransaction 
as follows. 

01: Procedure InsertTransaction (root, TNew); 

02: begin 

03:       foreach child TOld of root do 

04:       begin 

05:              if (TNew ∩ TOld = Ø)           /* case 1: empty*/ 

06:              begin 

07:                   create a new node for TNew; 

08:               end; 

09:               else if (TNew == TOld)         /* case 2: equivalence */ 

10:               begin 

11:                   break; 

12:                end; 

13:                else if (TNew ⊃ TOld)           /* case 3: superset */ 

14:                begin 

15:                    let TOld be TNew’s child; 

16:                 end; 

17:                 else if (TNew ⊂ TOld)           /* case 4: subset */ 

18:                 begin 

19:                     let TOld be TNew’s parent; 

20:                  end; 

21:                  else if (TNew ∩ TOld ≠ Ø)      /* case 5: intersection */ 

22:            begin 

23:            intersection := TNew ∩ TOld; 

24:             if (TOld’s descendant does not contain IntersectionX) 

25:             begin 

26:                 create a new node for intersectionX; 

27:                 TNew link to intersectionX; 

28:                 TOld link to intersectionX; 

29:                 InsertTransaction (TNew, intersectionX); 

30:                 InsertTransaction (TOld, intersectionX); 

31:             end; 

32:         end; 

33:     end; 

34: end; 

When the first transaction T1 comes, the root does not have 
a child. So, a new node for the itemset {CDE} is created directly. 
The result of inserting transaction T1 is shown in Figure 6-(a), 
where (0, 0, 0) will record the quantity-sequence of such an 
itemset in batch Bi, Bi+1, and Bi+2, respectively, later. When the 
second transaction T2 comes, our algorithm will call Procedure 
InsertTransaction to check the set-relation among transaction T2 
and previous transactions. Transaction T2 will process Case 1 
(the empty relationship to {CDE}). Thus, a new node for itemset 
{AB}  is created. The result of inserting transaction T2 is shown 



in Figure 6-(b). When the third transaction T3 comes, we will 
call Procedure InsertTransaction to check the set-relation 
among transaction T3 and previous transactions. Transaction T3 
will process Case 2 (the equivalent relationship to {AB}). 
Moreover, our algorithm does not create a new node. The result 
of inserting transaction T3 is shown in Figure 6-(c). When the 
fourth transaction T4 comes, we will call Procedure 
InsertTransaction to check the set-relation among transaction T4 
and previous transactions. Transaction T4 will pass through the 
conditions of Case 3 (the superset relationship of {AB}) and 
Case 5 (the intersection relationship with {CDE}). First, the 
itemset of transaction T4 is the superset of itemset {AB}. 
Therefore, a new node for itemset {ABCD} is created and 
itemset {AB} becomes the child node of itemset {ABCD}. 
Second, itemset {ABCD} and itemset {CDE} have a common 
itemset {CD}. Next, we will call Function FindLattice to check 
whether the common itemset {CD} exists in the current lattice 
structure or not. Because the common itemset {CD} does not 
exist in the current lattice structure, our algorithm will create a 
new node {CD} to be the child node of itemset {ABCD} and 
itemset {CDE}. The result of inserting transaction T4 is shown 
in Figure 6-(d).  

 
Figure 6. The result of inserting transaction and inserting the quantity-

sequence of transaction into table SWTable: (a) T1; (b) T2: (c) T3; (d) T4. 

All the intersection of all the transactions in this window W1 
are stored in each node of this lattice structure and the 
corresponding quantity-sequence of the current window is 
stored in the table SWTable as shown in Figure 7-(a). Moreover, 
we insert the quantity-sequence QuantitySeq of each transaction 
into our data structure and update its child nodes. We will 
perform the mining process to find high utility patterns. 
Therefore, our algorithm inserts the quantity-sequence of 
transaction T1, 00232, which belongs to batch B1 into this lattice 
structure. The quantity-sequence QuantitySeq, 00232, is updated 
in the corresponding position of the array QSRecords in the node. 
In the same time, itemset {CDE} has a child node, {CD}. Thus, 
our algorithm updates the array QSRecords of itemset {CD} into 
(00230, 0, 0) by the quantity-sequence of transaction T1, 00230 
since this node only contains item C and item D. That is, we 
record the quantity-sequence of transaction T1 in the node {CDE} 
and all of its child nodes. Figure 7-(b) shows the window W1 has 
been set up. 

 
Figure 7. (a) The result of inserting transaction T1 - T6 and inserting the 

quantity-sequence of transaction T1 - T6 into table SWTable; (b) The result of 
inserting the quantity-sequence of transaction T1 - T6. 

The minimum utility of the window W1 is calculated from 
the table CntTable of the window W1 and the profit table. For 
example, in this case, TotalTU is 164 (=3 × 13 + 2 × 18 + 4 × 
11 + 7 × 5 + 5 × 2). The threshold of the window W1 is 36.08 
(=164 × 22%). First, the count of each single item is stored in 
table CntTable. Therefore, we can calculate the utility value of 
each item to obtain the high utility patterns. Second, each node 
of the lattice has an array QSRecords which holds the 
information about the quantity of each item in the itemset. 
Therefore, we can calculate the utility value of each itemset in 
the lattice to obtain the high utility patterns. When the utility 
value of the itemset is greater than the threshold, we identify this 
itemset as a high utility pattern. Because the subset of each high 
utility patterns in the lattice may be the high utility pattern, we 
examine the high utility patterns, which its utility value is greater 
than the threshold and the size of this itemset is greater than 2. 
By the way, the size of the itemset is k. If an itemset satisfies the 
above two points, our algorithm will create all subsets of such 
an itemset, which its size is k-1, to calculate the utility value of 
each subset recursively; otherwise, the mining operation will 
stop. We use the above example to achieve the contents of the 
above description. First, we obtain the high utility patterns, {A: 
39}, {C: 44}, from the table CntTable. Second, we have 
calculated the utility value of each itemset to obtain the high 
utility patterns, {CDE: 39}, {BC: 38}, {AB: 53}, {ACD: 48}, 
{CD: 59}. At this time, the itemset {CDE} and {ACD} satisfy 
the condition that the size of the itemset is greater than 2 and is 
a high utility pattern itself. Therefore, we will create the other 
subset of the itemset {CDE} and {ACD}, including {CE}, {DE}, 
{AC}, and {AD}, to check whether the itemsets is a high utility 
pattern or not. The result of the utility values of these four 
subsets are no greater than minimum utility. Thus, The utility 
values of these high utility patterns of the window W1 are {A: 
39}, {C: 44}, {CDE: 39} {BC: 38}, {AB: 53}, {ACD: 4 8}, {CD: 
59}. 

When a new batch information B4 which contains transaction 
T7  and transaction T8, comes as shown in Figure 5-(a), our 
algorithm will perform the deletion process. First, the tables 
CntTable and SWTable of the window W1 are updated by the 
information of the oldest batch B1, T1 and T2. Second, our 
algorithm shifts the array QSRecords of all nodes to the left as 
shown in Figure 8-(a). For example, for itemset {AB}, the 
original array QSRecords is (46000, 57000, 0). After the shifting 
process, the array QSRecords becomes (57000, 0, 0). If the 
shifted array QSRecords becomes zero (i.e., (0, 0, 0)), our 
algorithm removes this node from the lattice (i.e., the node with 
itemset {CDE}). The result of deletion process as shown in 
Figure 8-(b). When the deletion process is finished, we will 
perform the insertion process continuously. 



 
Figure 8. (a) The result of shifting the array QSRecords of all nodes to the 

left; (b) The result of deletion process. 

When the seventh transaction T7 comes, we will call 
Procedure InsertTransaction to check the set-relation among 
transaction T7 and previous transactions. Transaction T7 will 
pass through the conditions of Case 5  and Case 3. When the 
eighth transaction T8  comes, we will call Procedure 
InsertTransaction to check the set-relation among transaction T8 
and previous transactions. Transaction T8 will pass through the 
conditions of Case 4, Case 5, and Case 3. The result of inserting 
transaction T7 and T8 is shown in Figure 9-(a). All the 
intersection of all the transactions in this window W2 are stored 
in each node of this lattice structure. Then, we insert the 
quantity-sequence QuantitySeq of each transaction into our data 
structure and update all of its child nodes. In the same way, we 
perform our insertion process again. Therefore, our algorithm 
inserts the quantity-sequence of transaction T7, 00211, which 
belongs to batch B4 into this lattice structure. The quantity-
sequence QuantitySeq, 00211, is updated in the corresponding 
position of the array QSRecords in the node. In the same time, 
itemset {CDE} has a child node, {CD}. Thus, our algorithm 
updates the array QSRecords of itemset {CD} into (00110, 
00310, 00210) by the quantity-sequence of transaction T7, 00210 
since this node only contains item C and item D. Next, we insert 
the quantity-sequence of transaction T8, 13300, which belongs 
to batch B4 into this lattice structure. The quantity-sequence 
QuantitySeq, 13300, is updated in the corresponding position of 
the array QSRecords in the node. The result of inserting the 
quantity-sequence of transaction T7 and T8 is shown in Figure 9-
(b). 

 
Figure 9. (a) The result of inserting transaction T7 and T8 and inserting the 

quantity-sequence of transaction T7 and T8 into table SWTable; (b) The result of 
inserting the quantity-sequence of transaction T7 and T8. 

IV.  PERFORMANCE 

In this section, we first present the performance model. Then, 
we present experiments result. 

A. Performance Model 

In this subsection, we will compare the performance between 
the Subset-Lattice algorithm and the SHU-Grow algorithm for 
the synthetic database. And, in the sliding window model, 
algorithms use two parameters, the size of the window and the 
size of the batch. Therefore, we evaluate mining performance of 
the both algorithms in terms of the processing time under the 
change of the size of the batch and the change of the size of the 
window. Besides, we also evaluate mining performance of the 
both algorithms in terms of the processing time under the change 
of the minimum utility threshold. The profit of each item is 
generated between 1 and 5, and the count of each item is 
generated between 1 and 10. The parameters used in the 
generation of the data are shown in Table I [2]. For example, we 
set the size of the window as 3 and the size of the batch as 2. 
Therefore, each window contains 2 × 3 = 6 transactions. 

TABLE I.  THE DETAILS OF PARAMETERS USED IN THE EXPERIMENTS 

Parameters Meaning 

Tavg The average size of the transactions in the dataset 

|I| The number of the items in the dataset 

|D| The number of the transactions in the dataset 

Threashold The minimum utility threshold 

BatchSize 
The number of the transactions deleted and inserted 
while the window slides 

WindowSize The number of the batches in the window 

B. Experiments Results 

In this subsection, we will compare the performance between  
Subset-Lattice algorithm and SHU-Grow algorithm. We 
compare the processing time and the number of nodes of the 
synthetic database. We set the size of the window as 3, the size 
of batch as 2, and the minimum utility threshold as 22%.  

In Figure 10-(a), we show the comparison of the processing 
time of both algorithms for the synthetic dataset on T(5-
9).I60.D1K under the change of average size of transactions. We 
observe that the processing time of the SHU-Grow algorithm 
increases, when the average size of the transactions increases. 
Because the number of the candidate patterns increases in each 
window as the average size of the transactions increases. 
However, the Subset-Lattice algorithm obtains the candidate 
patterns easily. Therefore, the Subset-Lattice algorithm will take 
the shorter time to find the high utility patterns than the SHU-
Grow algorithm. 

In Figure 10-(b), we show the comparison of the processing 
time of both algorithms for the synthetic dataset on T5.I(20-
100).D1K under the change of the number of items. We observe 
that the processing time of the Subset-Lattice algorithm 
increases, when the number of items decreases. Therefore, the 
number of transactions with the intersection relationship 
increases in the Subset-Lattice algorithm as the number of items 
decreases. Because the Subset-Lattice algorithm obtains the 



candidate patterns easily. Therefore, the Subset-Lattice 
algorithm will take the shorter time to find the high utility 
patterns than the SHU-Grow algorithm. 

In Figure 10-(c), we show the comparison of the processing 
time of both algorithms for the synthetic dataset on T8.I60.D(1-
15)K under the change of the size of dataset. We observe that 
the processing time of the SHU-Grow algorithm and the Subset-
Lattice algorithm increases, when the size of a dataset increases. 
The result shows that the number of the candidate patterns 
increases in each window as the number of transactions 
increases. Because the Subset-Lattice algorithm obtains the 
candidate patterns easily. Therefore, the Subset-Lattice 
algorithm will take the shorter time to find the high utility 
patterns than the SHU-Grow algorithm. 

In Figure 10-(d), we show the comparison of the number of 
nodes of both algorithms for the synthetic dataset on T5.I(20-
100).D1K under the change of the number of items. Due to that 
the SHU-Grow algorithm performs the mining process, it 
generates other tree structure, which keeps the information. 
Therefore, the SHU-Grow algorithm requires more number of 
nodes to construct their structure. We observe that the number 
of nodes of the Subset-Lattice algorithm increases, when the 
number of items decreases. The number of transactions with the 
intersection relationship increases in the Subset-Lattice 
algorithm as the number of items decreases. Therefore, the 
number of nodes of the Subset-Lattice algorithm will increases. 
However, the Subset-Lattice algorithm uses fewer nodes than 
the SHU-Grow algorithm. 

 
Figure 10. A comparison of the processing time of the synthetic dataset: (a) 
T(5-9).I60.D1K, under the change of the average size of transactions; (b) 

T5.I(20-100).D1K, under the change of the number of items; (c) T8.I60.D(1-
15)K, under the change of the size of dataset; (d) T5.I(20-100).D1K, under 

the change of the number of items. 

V. CONCLUSION 

In this paper, we have proposed the Subset-Lattice algorithm 
which can mine the high utility patterns by the actual contribu-
tion value. In our algorithm, we use the lattice structure to keep 
the information of the transactions in each window. Moreover, 
our proposed algorithm uses an array, QSRecords, to store the 
processed transaction data, QuantitySeq. From our performance 

results, the Subset-Lattice algorithm has better performance 
than the SHU-Grow algorithm in the synthetic data. 
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