
A Subset-Lattice Algorithm for Mining High Utility Patterns
over the Data Stream Sliding Window

Ye-In Chang, Chia-En Li, Rong-Fu Chen, Siang-Jia Du, Ching-Yi Yen
Department of Computer Science and Engineering

National Sun Yat-sen University
Kaohsiung, Taiwan

lice@db.cse.nsysu.edu.tw

ABSTRACT
High utility pattern mining considers each item with a distinct
profit or price. The problem is that infrequent patterns may
contribute a great number of profit, whereas frequent patterns
may only contribute a small amount of profit. The SHU-Grow
algorithm uses the tree-based data structure to mine high utility
patterns. In such a structure, the SHU-Grow algorithm always
records the estimated value of each pattern. Then, such an
algorithm has to identify actual high utility patterns from the
candidate patterns. In this paper, we propose the Subset-Lattice
algorithm based on the sliding window model. Our algorithm
utilizes the lattice structure to record the information of the
transactions and to store relationship between the child node and
the parent node. From the performance study, we show that our
Subset-Lattice algorithm could provide better performance than
the SHU-Grow algorithm both in the processing time and storage
space.

Keywords: data mining, frequent pattern, high utility pattern,
lattice structure, sliding window

I. INTRODUCTION

In the real world, each item has different profit and the
number of items purchased by consumers could be not only one,
but more than one. In utility mining, each item has internal utility
value that represents the quantity of the item in each transaction,
and external utility value such as profit or price. Based on these
definitions, we can get the utility of each item and identify high
utility patterns in high utility pattern mining [1-3]. In this utility
framework, patterns with high utility or high purchase quantity
will be identified as high utility patterns even if they occur
infrequently. In other words, high utility pattern mining does not
satisfy the downward closure property, which means that the
item is infrequent, and its superset is also infrequent [4-13].
However, the superset of the low utility pattern will probably be
a high utility pattern. So, high utility pattern mining is more
difficult than traditional frequent pattern mining. In high utility
pattern mining, it considers that each item with a distinct profit
or price and non-binary item quantity in a transaction. On the
other hand, the profit represents the importance of an item. It is
the important difference with the previous frequent pattern
mining. Thus, the high utility mining is based on two kinds of
numeric data, the quantity and the profit of each item, and it can
play an important role in market analysis. If the utility of an
itemset is greater than the minimum utility threshold, this
itemset is identified as a high utility pattern and reflects real
world market data.

Ryang et al. proposed the SHU-Grow algorithm. They use
SHU-Tree data structure to store transactions within the current
window. The technology of their algorithm can handle several
batches of transactions within the current sliding window. In the
SHU-Grow algorithm, for each batch in the current sliding
window, a utility counter with b batches is constructed. If an
item is in the ith batch of the current sliding window, the ith
batch is set to be the estimated utility of the item. When the
window slides, the list of utility counter of nodes is needed to
left-shift to delete the oldest batch. For example, the utility
counter of node A is (30, 20, 0). If the oldest batch is deleted, the
utility counter of node A becomes (20, 0, 0). Moreover, their
algorithm has a header table to store the estimated utility of each
single item called RTWU. When the oldest batch is deleted, the
RTWU of item A will be decreased by 30 in the header table.
The SHU-Grow algorithm needs to check each candidate pattern
to decide whether it is a high utility pattern or not. Thus, they
need to scan each transaction within the current window again.

Therefore, in this paper, we propose an algorithm, Subset-
Lattice algorithm, to find the result based on the real value,
instead of the estimated value, of the pattern. In our data
structure, we use a lattice to mine high utility patterns. We check
the relation between the incoming transaction and the current
transactions in the lattice structure, when the new transaction
comes [14]. There are five relations which are concerned in our
algorithm: (1) empty, (2) equivalent, (3) superset, (4) subset, and
(5) intersection. Because the relations exists between the set and
the subset, there is one advantage that there are fewer number of
nodes in the lattice than those nodes stored in the tree of the
SHU-Grow algorithm. We can calculate the real value of the
each single item. Furthermore, our lattice structure requires
fewer nodes than the SHU-Tree. Besides, our proposed
algorithm records the real value rather than the estimated value
of the pattern. Therefore, the Subset-Lattice algorithm has better
performance than the SHU-Grow algorithm both in the
processing time and storage space (the number of created nodes).

The rest of the paper is organized as follows. In Section 2,
we give a brief description of the SHU-Grow algorithm. In
Section 3, we present the proposed Subset-Lattice algorithm. In
Section 4, we present the performance study of our algorithm
and make a comparison between our algorithm and the SHU-
Grow algorithm [15]. Finally, Section 5 gives the conclusion.

II. RELATED WORK

Ryang et al. proposed a sliding window based algorithm,
SHU-Grow (Sliding window based High Utility Grow) [2] with
a data structure SHU-Tree (Sliding window based High Utility

Tree) to mine high utility patterns from the data stream.
Moreover, they use two techniques, RGE (Reducing Global
Estimated utilities) and RLE (Reducing Local Estimated
utilities). The problem is defined as mining high utility patterns
within the current window. The mining result must be updated
by every window sliding. Figure 1-(a) shows a data stream. In
Figure 1-(a), each item im in a transaction Tf is associated with a
quantity value which is called internal utility and denoted as
iu(im, Tf). In Figure 1-(b), let I = { i1, i2, ..., iv} be a finite set of
distinct items, a transaction Tf be a subset of I, and a pattern P be
a set of items {i1, i2, ..., i l} in I, where P ∈ I and 1 ≤ l ≤ v. Each
item im in a database has a unit profit which is called external
utility and denoted as eu(im). If TWU of a pattern P in Wk is no
smaller than minutilWk , where minutilWk is the minimum utility
threshold, P is a high transaction weighted utilization pattern.

Figure 1. (a) Data stream; (b) Profit table [2].

The framework of the algorithm is composed of three steps.
In the first step, their method constructs a global tree through a
single scan of the current window in data stream by the RGE
technique. In the second step, it generates candidate patterns
from the constructed tree by the RLE technique. In the last step,
the algorithm identifiers a set of high utility patterns from the
candidates. Meanwhile, the global tree can be updated,
whenever a window is full and a new batch arrives by
eliminating the oldest batch and reflecting the new one. In the
SHU-Tree, each node N has the following basic elements: the
item name, N.name; the more reduced overestimation utilities
than TWU is called RTWU(Reduced TWU), N.nu; two node
pointer, N.parent and N.nodelink; a set of child nodes. N.tail have an
array of boolean values. If there are n batches in the current
window, the number of node utilities in the counter is n. Figure
2 shows the constructed global SHU-Tree after the last batch B3
is inserted.

Figure 2. The result of inserting transactions T1-T6.

III. THE SUBSET-LATTICE ALGORITHM

In this section, we propose the Subset-Lattice algorithm to
identify the high utility patterns over data streams using the
sliding window model.

A. Data Structure

In utility mining, each item has the individual profit and the
non-binary form quantity in the transaction. The high utility
patterns are the sets of items that contribute the profitable value,
which satisfy the threshold, in the database. However,
the ”Downward Closure Property” does not hold in this
technique [5, 6, 9, 10, 12, 13]. (Note that the ”Downward
Closure Property” mean that the item is infrequent, and its
superset is also infrequent.). The lattice structure contains the
root, nodes, and child-link as shown in Figure 3. The root is a
start point, which has no information. When a new transaction
comes, we search the lattice structure from the root. In each node,
we record the itemset and the array QSRecords. The child-link
points to the subset node. With the child-link, we can check the
relationship between nodes and insert the node into the lattice
structure easily. Moreover, we can update the number of items
in an itemset efficiently by the array QSRecords to know the
number of each item. The array QSRecords has the quantity-
sequence representation of the quantity of each item. The size of
the array QSRecords is |Batch|, i.e., the number of batches in a
window, and the length of the quantity-sequence is |Item|, i.e.,
the size of a set of items in the database. In other words, |Item|
is the longest length of distinct items. The table CntTable is an
array which stores the quantity of each item in the current
window. When the inserting process and the deleting process are
performed, we will update the contents of the table CntTable
according to the quantity-sequence. The table SWTable is an
array which stores all transactions of the current window and the
corresponding quantity-sequence of each transactions. When the
inserting process and the deleting process are performed, we will
update the contents of the table SWTable by the transaction
existing in this window. This lattice structure has three
advantages. First, the relationship between the new transaction
and the current transactions can be easily understood by using
this lattice structure. Second, we can update the number of items
in an itemset efficiently. Third, we calculate the actual value
rather than the estimated value.

Figure 3. The lattice of the window W1.

B. The Proposed Algorithm

Our algorithm has five main steps. First, we transform the
itemset to the quantity sequence. Second, we check the relation
between the new transaction and the current transactions, and the
corresponding quantity-sequence of the current window is
stored in the table SWTable. Next, we insert the quantity-

sequence into the array QSRecords of the corresponding node
and update its child nodes. Then, calculate the utility of the
itemset on each node in the lattice structure. Finally, we examine
the subset of a set of the current high utility patterns. In the first
step, we will transfer the transaction into the quantity-sequence
representation. We use the longest length of distinct items as the
length of the quantity-sequence according to the lexical order. In
the second step, we check the relation between the new
transaction and the current transactions. There are five cases, as
shown in Figure 4, in inserting itemsets into the lattice structure.
When the current window becomes full, we will delete the
information of the oldest batch (a set of transactions) and insert
the information of a new batch. At this time, we set the array
QSRecords of all nodes initially to zero (i.e., (0, 0, 0)).

Figure 4. The set-relations diagram between the new transaction TNew and

the old transaction TOld: (a) Case 1: Empty; (b) Case 2: Equivalent; (c) Case 3:
Superset; (d) Case 4: Subset; (e) Case 5: Intersection.

In order to get the information of the quantity, we use the
quantity-sequence representation to store the information of
each transaction. The longest length of the quantity-sequence is
the number of distinct items according to the lexical order. For
the example of the transaction {(C, 2), (D, 3), (E, 2)}, we set the
values to the corresponding quantity one by one according to the
lexical order position. The quantity-sequence representation of
{(C, 2), (D, 3), (E, 2)} is denoted as QuantitySeq, 00232, since
there are five items {A, B, C, D, E}. Because this transaction
does not contain item A and item B, the position of item A and
item B are set to 0. The quantity-sequence of the window W1 is
shown in Figure 5-(a). During the processing of data insertion,
we will record Ti and its related quantity-sequence in table
SWTable as shown in Figure 5-(b).

Figure 5. (a) The quantity-sequence of each transaction in window W1; (b)

Profit table.

We use an example to describe our approach. Figure 5-(a)
shows an example of the data stream and Figure 5-(b) shows an

example of the profit table. We assume that the size of a batch is
2 transactions, the size of a window is 3 batches, and the
minimum utility threshold is 22%. The length of quantity-
sequence is 5 and the size of the array QSRecords is 3. When the
new transaction comes, we process Procedure InsertTransaction
as follows.

01: Procedure InsertTransaction (root, TNew);

02: begin

03: foreach child TOld of root do

04: begin

05: if (TNew ∩ TOld = Ø) /* case 1: empty*/

06: begin

07: create a new node for TNew;

08: end;

09: else if (TNew == TOld) /* case 2: equivalence */

10: begin

11: break;

12: end;

13: else if (TNew ⊃ TOld) /* case 3: superset */

14: begin

15: let TOld be TNew’s child;

16: end;

17: else if (TNew ⊂ TOld) /* case 4: subset */

18: begin

19: let TOld be TNew’s parent;

20: end;

21: else if (TNew ∩ TOld ≠ Ø) /* case 5: intersection */

22: begin

23: intersection := TNew ∩ TOld;

24: if (TOld’s descendant does not contain IntersectionX)

25: begin

26: create a new node for intersectionX;

27: TNew link to intersectionX;

28: TOld link to intersectionX;

29: InsertTransaction (TNew, intersectionX);

30: InsertTransaction (TOld, intersectionX);

31: end;

32: end;

33: end;

34: end;

When the first transaction T1 comes, the root does not have
a child. So, a new node for the itemset {CDE} is created directly.
The result of inserting transaction T1 is shown in Figure 6-(a),
where (0, 0, 0) will record the quantity-sequence of such an
itemset in batch Bi, Bi+1, and Bi+2, respectively, later. When the
second transaction T2 comes, our algorithm will call Procedure
InsertTransaction to check the set-relation among transaction T2
and previous transactions. Transaction T2 will process Case 1
(the empty relationship to {CDE}). Thus, a new node for itemset
{AB} is created. The result of inserting transaction T2 is shown

in Figure 6-(b). When the third transaction T3 comes, we will
call Procedure InsertTransaction to check the set-relation
among transaction T3 and previous transactions. Transaction T3
will process Case 2 (the equivalent relationship to {AB}).
Moreover, our algorithm does not create a new node. The result
of inserting transaction T3 is shown in Figure 6-(c). When the
fourth transaction T4 comes, we will call Procedure
InsertTransaction to check the set-relation among transaction T4
and previous transactions. Transaction T4 will pass through the
conditions of Case 3 (the superset relationship of {AB}) and
Case 5 (the intersection relationship with {CDE}). First, the
itemset of transaction T4 is the superset of itemset {AB}.
Therefore, a new node for itemset {ABCD} is created and
itemset {AB} becomes the child node of itemset {ABCD}.
Second, itemset {ABCD} and itemset {CDE} have a common
itemset {CD}. Next, we will call Function FindLattice to check
whether the common itemset {CD} exists in the current lattice
structure or not. Because the common itemset {CD} does not
exist in the current lattice structure, our algorithm will create a
new node {CD} to be the child node of itemset {ABCD} and
itemset {CDE}. The result of inserting transaction T4 is shown
in Figure 6-(d).

Figure 6. The result of inserting transaction and inserting the quantity-

sequence of transaction into table SWTable: (a) T1; (b) T2: (c) T3; (d) T4.

All the intersection of all the transactions in this window W1
are stored in each node of this lattice structure and the
corresponding quantity-sequence of the current window is
stored in the table SWTable as shown in Figure 7-(a). Moreover,
we insert the quantity-sequence QuantitySeq of each transaction
into our data structure and update its child nodes. We will
perform the mining process to find high utility patterns.
Therefore, our algorithm inserts the quantity-sequence of
transaction T1, 00232, which belongs to batch B1 into this lattice
structure. The quantity-sequence QuantitySeq, 00232, is updated
in the corresponding position of the array QSRecords in the node.
In the same time, itemset {CDE} has a child node, {CD}. Thus,
our algorithm updates the array QSRecords of itemset {CD} into
(00230, 0, 0) by the quantity-sequence of transaction T1, 00230
since this node only contains item C and item D. That is, we
record the quantity-sequence of transaction T1 in the node {CDE}
and all of its child nodes. Figure 7-(b) shows the window W1 has
been set up.

Figure 7. (a) The result of inserting transaction T1 - T6 and inserting the

quantity-sequence of transaction T1 - T6 into table SWTable; (b) The result of
inserting the quantity-sequence of transaction T1 - T6.

The minimum utility of the window W1 is calculated from
the table CntTable of the window W1 and the profit table. For
example, in this case, TotalTU is 164 (=3 × 13 + 2 × 18 + 4 ×
11 + 7 × 5 + 5 × 2). The threshold of the window W1 is 36.08
(=164 × 22%). First, the count of each single item is stored in
table CntTable. Therefore, we can calculate the utility value of
each item to obtain the high utility patterns. Second, each node
of the lattice has an array QSRecords which holds the
information about the quantity of each item in the itemset.
Therefore, we can calculate the utility value of each itemset in
the lattice to obtain the high utility patterns. When the utility
value of the itemset is greater than the threshold, we identify this
itemset as a high utility pattern. Because the subset of each high
utility patterns in the lattice may be the high utility pattern, we
examine the high utility patterns, which its utility value is greater
than the threshold and the size of this itemset is greater than 2.
By the way, the size of the itemset is k. If an itemset satisfies the
above two points, our algorithm will create all subsets of such
an itemset, which its size is k-1, to calculate the utility value of
each subset recursively; otherwise, the mining operation will
stop. We use the above example to achieve the contents of the
above description. First, we obtain the high utility patterns, {A:
39}, {C: 44}, from the table CntTable. Second, we have
calculated the utility value of each itemset to obtain the high
utility patterns, {CDE: 39}, {BC: 38}, {AB: 53}, {ACD: 48},
{CD: 59}. At this time, the itemset {CDE} and {ACD} satisfy
the condition that the size of the itemset is greater than 2 and is
a high utility pattern itself. Therefore, we will create the other
subset of the itemset {CDE} and {ACD}, including {CE}, {DE},
{AC}, and {AD}, to check whether the itemsets is a high utility
pattern or not. The result of the utility values of these four
subsets are no greater than minimum utility. Thus, The utility
values of these high utility patterns of the window W1 are {A:
39}, {C: 44}, {CDE: 39} {BC: 38}, {AB: 53}, {ACD: 4 8}, {CD:
59}.

When a new batch information B4 which contains transaction
T7 and transaction T8, comes as shown in Figure 5-(a), our
algorithm will perform the deletion process. First, the tables
CntTable and SWTable of the window W1 are updated by the
information of the oldest batch B1, T1 and T2. Second, our
algorithm shifts the array QSRecords of all nodes to the left as
shown in Figure 8-(a). For example, for itemset {AB}, the
original array QSRecords is (46000, 57000, 0). After the shifting
process, the array QSRecords becomes (57000, 0, 0). If the
shifted array QSRecords becomes zero (i.e., (0, 0, 0)), our
algorithm removes this node from the lattice (i.e., the node with
itemset {CDE}). The result of deletion process as shown in
Figure 8-(b). When the deletion process is finished, we will
perform the insertion process continuously.

Figure 8. (a) The result of shifting the array QSRecords of all nodes to the

left; (b) The result of deletion process.

When the seventh transaction T7 comes, we will call
Procedure InsertTransaction to check the set-relation among
transaction T7 and previous transactions. Transaction T7 will
pass through the conditions of Case 5 and Case 3. When the
eighth transaction T8 comes, we will call Procedure
InsertTransaction to check the set-relation among transaction T8
and previous transactions. Transaction T8 will pass through the
conditions of Case 4, Case 5, and Case 3. The result of inserting
transaction T7 and T8 is shown in Figure 9-(a). All the
intersection of all the transactions in this window W2 are stored
in each node of this lattice structure. Then, we insert the
quantity-sequence QuantitySeq of each transaction into our data
structure and update all of its child nodes. In the same way, we
perform our insertion process again. Therefore, our algorithm
inserts the quantity-sequence of transaction T7, 00211, which
belongs to batch B4 into this lattice structure. The quantity-
sequence QuantitySeq, 00211, is updated in the corresponding
position of the array QSRecords in the node. In the same time,
itemset {CDE} has a child node, {CD}. Thus, our algorithm
updates the array QSRecords of itemset {CD} into (00110,
00310, 00210) by the quantity-sequence of transaction T7, 00210
since this node only contains item C and item D. Next, we insert
the quantity-sequence of transaction T8, 13300, which belongs
to batch B4 into this lattice structure. The quantity-sequence
QuantitySeq, 13300, is updated in the corresponding position of
the array QSRecords in the node. The result of inserting the
quantity-sequence of transaction T7 and T8 is shown in Figure 9-
(b).

Figure 9. (a) The result of inserting transaction T7 and T8 and inserting the

quantity-sequence of transaction T7 and T8 into table SWTable; (b) The result of
inserting the quantity-sequence of transaction T7 and T8.

IV. PERFORMANCE

In this section, we first present the performance model. Then,
we present experiments result.

A. Performance Model

In this subsection, we will compare the performance between
the Subset-Lattice algorithm and the SHU-Grow algorithm for
the synthetic database. And, in the sliding window model,
algorithms use two parameters, the size of the window and the
size of the batch. Therefore, we evaluate mining performance of
the both algorithms in terms of the processing time under the
change of the size of the batch and the change of the size of the
window. Besides, we also evaluate mining performance of the
both algorithms in terms of the processing time under the change
of the minimum utility threshold. The profit of each item is
generated between 1 and 5, and the count of each item is
generated between 1 and 10. The parameters used in the
generation of the data are shown in Table I [2]. For example, we
set the size of the window as 3 and the size of the batch as 2.
Therefore, each window contains 2 × 3 = 6 transactions.

TABLE I. THE DETAILS OF PARAMETERS USED IN THE EXPERIMENTS

Parameters Meaning

Tavg The average size of the transactions in the dataset

|I| The number of the items in the dataset

|D| The number of the transactions in the dataset

Threashold The minimum utility threshold

BatchSize
The number of the transactions deleted and inserted
while the window slides

WindowSize The number of the batches in the window

B. Experiments Results

In this subsection, we will compare the performance between
Subset-Lattice algorithm and SHU-Grow algorithm. We
compare the processing time and the number of nodes of the
synthetic database. We set the size of the window as 3, the size
of batch as 2, and the minimum utility threshold as 22%.

In Figure 10-(a), we show the comparison of the processing
time of both algorithms for the synthetic dataset on T(5-
9).I60.D1K under the change of average size of transactions. We
observe that the processing time of the SHU-Grow algorithm
increases, when the average size of the transactions increases.
Because the number of the candidate patterns increases in each
window as the average size of the transactions increases.
However, the Subset-Lattice algorithm obtains the candidate
patterns easily. Therefore, the Subset-Lattice algorithm will take
the shorter time to find the high utility patterns than the SHU-
Grow algorithm.

In Figure 10-(b), we show the comparison of the processing
time of both algorithms for the synthetic dataset on T5.I(20-
100).D1K under the change of the number of items. We observe
that the processing time of the Subset-Lattice algorithm
increases, when the number of items decreases. Therefore, the
number of transactions with the intersection relationship
increases in the Subset-Lattice algorithm as the number of items
decreases. Because the Subset-Lattice algorithm obtains the

candidate patterns easily. Therefore, the Subset-Lattice
algorithm will take the shorter time to find the high utility
patterns than the SHU-Grow algorithm.

In Figure 10-(c), we show the comparison of the processing
time of both algorithms for the synthetic dataset on T8.I60.D(1-
15)K under the change of the size of dataset. We observe that
the processing time of the SHU-Grow algorithm and the Subset-
Lattice algorithm increases, when the size of a dataset increases.
The result shows that the number of the candidate patterns
increases in each window as the number of transactions
increases. Because the Subset-Lattice algorithm obtains the
candidate patterns easily. Therefore, the Subset-Lattice
algorithm will take the shorter time to find the high utility
patterns than the SHU-Grow algorithm.

In Figure 10-(d), we show the comparison of the number of
nodes of both algorithms for the synthetic dataset on T5.I(20-
100).D1K under the change of the number of items. Due to that
the SHU-Grow algorithm performs the mining process, it
generates other tree structure, which keeps the information.
Therefore, the SHU-Grow algorithm requires more number of
nodes to construct their structure. We observe that the number
of nodes of the Subset-Lattice algorithm increases, when the
number of items decreases. The number of transactions with the
intersection relationship increases in the Subset-Lattice
algorithm as the number of items decreases. Therefore, the
number of nodes of the Subset-Lattice algorithm will increases.
However, the Subset-Lattice algorithm uses fewer nodes than
the SHU-Grow algorithm.

Figure 10. A comparison of the processing time of the synthetic dataset: (a)
T(5-9).I60.D1K, under the change of the average size of transactions; (b)

T5.I(20-100).D1K, under the change of the number of items; (c) T8.I60.D(1-
15)K, under the change of the size of dataset; (d) T5.I(20-100).D1K, under

the change of the number of items.

V. CONCLUSION

In this paper, we have proposed the Subset-Lattice algorithm
which can mine the high utility patterns by the actual contribu-
tion value. In our algorithm, we use the lattice structure to keep
the information of the transactions in each window. Moreover,
our proposed algorithm uses an array, QSRecords, to store the
processed transaction data, QuantitySeq. From our performance

results, the Subset-Lattice algorithm has better performance
than the SHU-Grow algorithm in the synthetic data.

VI. ACKNOWLEDGMENTS

This research was supported in part by the Ministry of
Science and Technology of Republic of China under Grant No.
MOST-106-2221-E-110-079.

REFERENCES
[1] C. F. Ahmed, S. K. Tanbeer, B. S. Jeong, and H. J. Choi, “Interactive

Mining of High Utility Patterns over Data Streams,” Expert Systems with
Applications, vol. 39, no. 15, pp. 11979–11991, Nov. 2012.

[2] H. Ryang and U. Yun, “High Utility Pattern Mining over Data Streams
with Sliding Window Technique,” Expert Systems with Applications, vol.
57, pp. 215– 231, Sept. 2016.

[3] B. E. Shie, P. S. Yu, and V. S. Tseng, “Efficient Algorithms for Mining
Maximal High Utility Itemsets from Data Streams with Different Models,”
Expert Systems with Applications, vol. 39, no. 17, pp. 12947–12960, Dec.
2012.

[4] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules,” Proc. of the 20th Int. Conf. on VLDB, pp. 490–501, 1994.M.
Young, The Technical Writer's Handbook. Mill Valley, CA: University
Science, 1989.

[5] H. Chen, L. C. Shu, J. L. Xia, and Q. S. Deng, “Mining Frequent Patterns
in a Varying-Size Sliding Window of Online Transactional Data Streams,”
Information Sciences, vol. 215, pp. 15–36, Dec. 2012.

[6] M. Deypir, M. H. Sadreddini, and M. Tarahomi, “An Efficient Sliding
Window Based Algorithm for Adaptive Frequent Itemset Mining over
Data Streams,” Journal of Information Science and Eng., pp. 1001–1020.

[7] G. Grahne and J. F. Zhu, “Fast Algorithms for Frequent Itemset Mining
Using FP-Trees,” IEEE Trans. on Knowledge and Data Eng., vol. 17, no.
10, pp. 1347– 1362, Oct. 2005.

[8] J. L. Koh and S. N. Shin, “An Approximate Approach for Mining
Recently Frequent Itemset from Data Streams,” Computer Science Data
Warehousing and Knowledge Discovery, vol. 4081, no. 1, pp. 352–362,
Spet. 2006.

[9] H. F. Li and H. Chen, “Mining Non-Derivable Frequent Itemsets over
Data Stream,” Data and Knowledge Eng., vol. 68, No. 5, pp. 481–498,
May 2009.

[10] H. F. Li and S. Y. Lee, “Mining Frequent Itemsets over Data Streams
Using Efficient Window Sliding Techniques,” Expert Systems with
Applications, vol. 36, no. 2, pp. 1466–1477, March 2009.

[11] C. H. Lin, D. Y. Chiu, Y. H. Wu, and A. L. P. Chen, “Mining Frequent
Itemsets from Data Streams with a Time-Sensitive Sliding Window,”
Proc. of the SIAM Int. Conf. on Data Mining, pp. 68–79, 2005.

[12] S. K. Tanbeer, C. F. Ahmed, B. S. Jeong, and Y. K. Lee, “Sliding
Window-Based Frequent Pattern Mining over Data Streams,” Information
Sciences, vol. 179, no. 22, pp. 3843–3865, Nov. 2009.

[13] J. C. W. Lin, W. Gan, P. Fournier-Viger, H. C. Chao, and T. P. Hong,
“Efficiently mining frequent itemsets with weight and recency
constraints”, Appl. Intell., vol. 47, no.3, pp. 769-792, Oct. 2017.

[14] Y. I. Chang, M. H. Tsai, C. E. Li, and P. Y. Lin, “A Set-Checking
Algorithm for Mining Maximal Frequent Itemsets from Data Streams,”
Intelligent Technologies and Eng. Systems, vol. 20, no. 2, pp. 51–63,
April 2013.

[15] C. S. Hemalatha, V. Vaidehi, and R. Lakshmi, “Minimal Infrequent
Pattern Based Approach for Mining Outliers in Data Streams,” Expert
Systems with Applications, vol. 42, no. 4, pp. 1998–2012, March 2015.

